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Abstract. We extend upon previous works of accelerated gradient ows (with momen-
tum) in the Wasserstein-2 metric. The new ow imitates a gradient-based descent method
used for structural relaxation and adds an addition “steering” term to the momentum up-
dates. We provide simple numerical examples which show competitive convergence rates
with this new method.

1. Introduction

In optimization we typically seek the solution to

min
x∈Ω

f(x)

where f is a convex function from Ω → R. The most popular method, gradient descent, can
be modelled by the following trajectory (discrete and in the continuous limit):

xn+1 = argmin
x

{f(x) +
1

2η
dist(x, xn)}

d

dt
x =−∇f(x).

(1)

However, convergence with gradient descent is typically slow near minima due to a vanishing
gradient. Several augmentations to gradient descent have been proposed which may improve
the convergence rates, the most notable being momentum-based approaches (e.g., Nesterov’s
algorithm). These methods introduce a velocity/momentum term which is updated by the
gradient, and gradually damped so that a stationary point is eventually reached. We will
show in Section 2 that accelerated gradient ows can be formulated as the superposition of
Hamiltonian ow and a damped ow.

In this work we consider optimization of functionals over the space of probability distri-
butions (with nite second order moments):

min
µ∈P2(Ω)

F (µ),

where F : P2(Ω) → R is a functional over the space of probability distributions. We
extend several gradient-based optimization methods with the gradient ows of metric spaces,
considering the convergence rates of these approaches.

FIRE Minimization. [1] proposes a novel minimization algorithm for local atomic struc-
ture optimization, known as FIRE. The algorithm utilizes only gradient information, but
has been shown to be competitive with conjugate gradient and quasi-Newton methods. The
authors of FIRE recommend the following equation of motion, analogous to a “blind skier”
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search:

d

dt
q⃗ = p⃗(t)

d

dt
p⃗ =

⃗F (t)

m
−γ(t)|p⃗(t)|(p̂(t)− F̂ (t))

(2)

where γ(t) is a damping factor, F⃗ = −∇f(x), and mass m (we will consider only m = 1).
In comparison to standard accelerated gradient-descent approaches, FIRE not only includes
damping but also “steering,” which introduces new dynamics as compared to the ow of
these accelerated gradient methods (see Section 2).

2. Hamiltonian Dynamics of Optimization Methods

As shown in [2], the class of accelerated gradient descent methods (e.g., Nesterov’s method
[3]) can be modeled by the combination of Hamiltonian dynamics with a damping eld.

Review of Hamiltonian Dynamics. Hamilton’s principle, or the principle of least ac-
tion, describes the law governing the dynamics of mechanical systems. The Lagrangian is
commonly used, coupled with the Euler-Lagrange equations, to describe the equations of
motion.

Similarly, we can describe the same dynamics through Hamiltonian mechanics. Let q⃗ =
{qi}

N
i=1 denote coordinate/position variables, and p⃗ = {pi}

N
i=1 represent the corresponding

momentum. The dynamics are governed by the following system:

dq⃗

dt
=

∂H

∂p⃗
,

dp⃗

dt
= −

∂H

∂p⃗
. (3)

Assuming that the kinetic energy T has a homogeneous quadratic dependence and the
potential energy V is independent of velocity, the Hamiltonian is equivalent to the total
energy of the system; i.e., H(q⃗, p⃗, t) = H(q⃗, p⃗) = T (p⃗) + V (q⃗). In the case of optimization,
we set V to be the function we with to minimize over (i.e., V (x) = f(x)).

By conservation of energy, starting with any given (q⃗0, p⃗0), the dynamics must evolve
along a xed level set, for which H(q⃗, p⃗) = H(q⃗0, p⃗0). That is, the trajectory is along a xed
subset in (p, q) phase space.

Damped Hamiltonian Flow. In optimization, we require that the solution reaches a sta-
tionary/xed point, which is generally incompatible with systems lacking dissipative forces.
For example, a simple harmonic oscillator without damping has a maximum displacement
that is invariant with time.

A system with damping/dissipative forces cannot be described by a Hamiltonian dynam-
ics with a Hamiltonian which equals the system’s total energy; for example, the following
equation of motion:

d2q

dt2
+ γ(t)

dq

dt
+

dV (q)

dq
= 0. (4)

We manually introducing a dissipation eld (as in [2]); we extend upon this idea by also
adding velocity modications.
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Dissipation Field and Steering. Following [2] and [4], we introduce a dissipation eld
which aects the equation of motion for momentum:

d

dt


q⃗

p⃗



=


1 0
0 −1

 
∇p⃗H
∇q⃗H



−


0

γ(t)p⃗



. (5)

This combines the Hamiltonian ow with a dissipative force, ensuring that ∥p⃗∥ → 0 as t →
∞. Notice that without damping and with a kinetic term that is quadratic in momentum,
Equation 5 reduces to the velocity updating under traditional gradient descent.

Figure 1 represents the ow elds for the right-hand side of this equation for a particle with

a one-dimensional quadratic kinetic and potential energy: T (p, q) = p2

2m and V (q) = 1
2q

2.

q

p

Hamiltonian eld

q

p

Combined eld

q

p

FIRE Hamiltonian eld

q

p

FIRE eld

Figure 1. Left to right: Hamiltonian, dissipative ow, accelerated Hamiltonian
ow, FIRE-Hamiltonian (no dissipation), and FIRE vector elds for a particle
with quadratic potential. Position q on the horizontal axis and momentum p on the
vertical axis, damping is γ(t) = 1

2 .

We consider the equation of motion prescribed by FIRE (Equation 2), and augment the
ow in Equation 5 to mimic the motion by introducing an additional velocity modication
(i.e., steering):

d

dt


q⃗

p⃗



=



1 0

0 −(1 + γ(t) ∥p⃗∥
∥∇q⃗H∥)

 
∇p⃗H
∇q⃗H



−


0

γ(t)p⃗



. (6)

Equations 5 and 6 dene our the setup for accelerated gradient ow and accelerated gradi-
ent ow with steering, which we generalize to descent methods over the space of probability
distributions.
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3. Accelerated Gradient Flow

Hamiltonian with Wasserstein Gradient Flow. Rather than considering the equa-
tion of motion for a particle, we generalize to probability distributions, replacing q⃗ with
ρ (position) and p with ν (velocity), and update the functional we wish to minimize over
V : P2(Ω) → R. That is, Equation 5 now is updated to:

∂

∂t


ρ

ν



=


1 0
0 −1

 
δ
δν
H

δ
δρ
H



−


0

γ(t)ν



. (7)

We consider Equation 7 only in the Wasserstein metric, though this can be extended
to various other metrics. The Wasserstein Gradient Flow, with respect to some functional
F : P2(Ω) → R, satises:

∂

∂t
ρ = ∇ ·



ρ∇
δF

δρ



, (8)

where ∇ δF
δρ

is the Wasserstein gradient and δF
δρ

can be found through a small variation,

considering F (ρ+ ϵξ) for some ξ ∈ P2(Ω) [5].
We adapt the Hamiltonian ow by nding the kinetic term of the Hamiltonian in terms

of ν. We posit H(ρ, ν) = T (ρ, ν) + V (ρ) and that one should recover updates according to
the Wasserstein Gradient Flow; i.e.,

∂

∂t
ρ =

δH

δν
=

δT

δν
:= −∇ · (ρ∇ν) ,

implying that the kinetic term has the form:

T (ρ, ν) := −
1

2



(∇ · (ρ∇ν)) dν. (9)

Using this new kinetic term results in the following Hamiltonian dynamics for ν:

δH

δρ
=

δT

δρ
+

δV

δρ
=

1

2
(∇ν)2 +

δV

δρ
(10)

see Appendix A for details of the proof.

Incorporating Steering. We are not aware of a suitable norm for probability spaces (since
a metric does necessarily induce a norm), so to adapt Equation 6 for gradient ows, we use
a “norm” which only considers the square-root of the second-moment of a distribution. Note
that this does not meet all the requirements of a norm, but the goal is to approximate the
behavior of Equation 6. One interpretation of the dynamics is:

∂

∂t
ρ = −∇ · (ρ∇ν)

∂

∂t
ν = −γ(t)ν −



1 + γ(t)



Ex∼ν [z2]

Ex∼τ [x2]



τ

(11)

where τ is 1
2(∇ν)2 + δV

δρ
.

We note that for a convex function, the strict minimizer is clearly a stationary point for
standard gradient ow and accelerated gradient ow (damping sets the velocity to zero).
For our ow with steering, the same may not hold true if the τ does not vanish faster than
its second moment.
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Discretization of Accelerated Gradient Flow (No Steering). We seek to nd a dis-
cretization of the Accelerated Wasserstein gradient ow, in terms of particles x⃗ = {xi}

N
i=1

with xi ∼ ρ and velocities v⃗ = {vi}
N
i=1.

It is unclear how to discretize Equation 11. We model similar to [4] and will attempt the
following discretization:

d

dt
xi = vi

d

dt
vi = −γ(t)vi −



1 + γ(t)



Ex∼ν [z2]

Ex∼Fi
[x2]



Fi

Fi = ∇


δV

δρ



(xi)

(12)

and estimate the moments after the discretization.

Wasserstein Gradient and Convexity of Example Functions. We now consider ex-
ample potential energies V (ρ) and consider their corresponding Wasserstein gradient and
convexity under the Wasserstein-2 geometry.

Example 1: V (ρ) =

V(x)ρ(x) dx for V : Ω → R.

The Wasserstein gradient is ∇ δV
δρ

= ∇V . In addition, V is always convex under the L2

metric, but is only convex under W 2 when V is also convex.

Example 2: V (ρ) = 1
2


W (x, y)ρ(x)ρ(y) dx dy for W : Ω× Ω → R.

The Wasserstein gradient is ∇ δV
δρ

=

∇W (x, y)ρ(y) dy. Furthermore, in W 2 metric, V is

convex only when W is convex.

Example 3: V (ρ) = −

ρ(x)f(ρ(x)) dx for f : R+ → R.

The Wasserstein gradient is ∇ δV
δρ

= −∇(f(ρ) + ρf ′(ρ)) and is convex when f is convex.

4. Numerical Examples

Example: Quadratic Function. We consider Ω = R
3 and the following potential:

V (ρ) =



Ω

∥x∥2ρ(x) dx,

which clearly has a strict minimizing measure ρ⋆ (delta about zero) with minimum value 0.
In our numerical experiments we take a Lagrangian discretization of the distribution,

taking N points, rewriting the potential as:

V (ρ) ≈
1

N

N

i

∥xi∥
2

Figure 2 shows the convergence rate comparing the three approaches: standard gradient
ow, accelerated ow, and accelerated ow with steering.
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Figure 2. Simple quadratic function gradient ow convergence comparison. En-
ergy versus iteration number.

Example: Fokker–Planck. We consider Ω = R
2 and the following potential:

V (ρ) =



Ω

∥x∥2ρ(x) dx−



Ω

ρ(x)(log(x)− 1) dx,

which is the sum of a linear term and an entropy (with respect to Lebesque measure on R
2).

As we have shown in, this is the sum of two convex functions.
Under our Lagrangian discretization, we rewrite the potential as:

V (ρ) ≈
1

N


N

i

∥xi∥
2 − log(min

j ̸=i
dist(xi, xj))



.

Notice that the right expression is an estimator of the entropy, which sums the logarithm
of the nearest-neighbor distance [5]. In our implementation, we build a K-D Tree for fast
nearest-neighbor lookup. The gradients are also computed analytically.

We randomly same N = 103 random points, with half sampled from the rst quadrant
and the other half the third quadrant. Figure 3 shows the initial conguration, after 500,
1000, 2000, and 5000 iterations of the discretization gradient ow for standard descent,
accelerated ow without steering, and accelerated ow with steering. The points converge
along a Gaussian distribution.
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Figure 3. Fokker-Planck gradient ow for standard gradient descent (top), ac-
celerated ow (middle), and accelerated ow with steering (bottom). Left to right:
Initial conguration (uniformly sampled from rst and third quadrant), after 500, 1000, 2000,
and 5000 iterations of gradient ow with xed step size 0.5 and damping γ(t) = 0.5. Color
based on iteration number.

Animated visualizations of comparing these ows can be found here.
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Figure 4. Fokker-Planck gradient ow convergence comparison.
Energy versus iteration number (left) and residual (right).
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Figure 4 shows the total potential energy as a function of iteration number. The acceler-
ated ow with steering appears to converge signicantly faster than the other two methods.

Though we have not proven convergence rates (it is not straightforward to nd this), [4]
has shown that if V is β-strongly convex, then convergence of accelerated Wasserstein gra-

dient ow is O(e−
√
βt). We predict it is not signicantly dierent for the case of accelerated

ow with steering.
However, experimental results seem to dictate that there are scenarios where this accel-

erated gradient ow converges faster than previous methods.

Example: KL Divergence. We follow [6] to approximate the KL Divergence from sam-
ples. Our numerical experiment tests against a Cornell University logo, from which we
sample 103 − 104 points. The initial conguration is uniformly sampled from a 2-D square
and we perform several iterations of our accelerated descent with steering, shown in Figure 5.

Figure 5. KL Divergence example. From left to right: reference Cornell logo,
initial conguration, resulting conguration after 500 iterations, 1000 iterations,
and 5000. Distribution of reference image taken by sampling 103 − 104 points.

We do not cite convergence rates since the KL divergence estimate sometimes resulted in
overows. A fully animated visualization can be found here.

5. Discussion

We have developed and implemented several methods for Wasserstein gradient ow, con-
sidering ow without damping or acceleration, with damping (accelerated ow), and nally
with damping and velocity “steering.” We are not aware of any previous work that incorpo-
rates velocity steering in the context of gradient ow. These results may be benecial for
high-performance gradient ow (e.g., in training Bayesian neural networks).

In terms of potential future directions, the discretization of our algorithms could be im-
proved, such as with adaptive step sizes and non-constant damping. In addition, we note
that the Lagrangian discretization is not suitable for distributions in high-dimensions and
does not oer a good approximation to these measures without an exceedingly high compu-
tational cost. Some work has shed light toward the use of neural networks to approximate
the JKO update scheme (by estimating the proximal update) [7]. Though we were lim-
ited by computational resources, we should certainly aim for a wider variety of numerical
experiments for benchmarks, perhaps considering optimization over non-convex functions.

Regarding our choice of Hamiltonian dynamics, we manually added damping to our sys-
tem. This separates the Hamiltonian dynamics from the damping forces, which allows the
Hamiltonian to be equal to the total energy and conserves its quantity (time-independent).
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However, this is not a strict requirement; one may consider a Hamiltonian with exponential
time factors, relaxing our requirement that H equals the total energy.

All code used to create the gures and numerical examples can be found here.

Appendix A. Gradient Flow Derivations

Kinetic Term of Hamiltonian. Following [5], we show that T (ρ, ν) in Equation 9 has
the desired derivative with respect to ν. Take some ξ ∈ P2(Ω) and ϵ ∈ R and consider the
variation

T (ρ, ν + ϵξ) = −
1

2



(ν + ϵξ)(∇ · (ρ∇(ν + ϵξ)))(x) dx

= −
1

2



(ν(∇ · (ρ∇ν))(x) dx

  

T (ρ,ν)

−ϵ



(ξ(∇ · (ρ∇ν))(x) dx+ o(ϵ2)

= T (ρ, ν)− ϵ



∇ · (ρ∇ν)) dξ + o(ϵ2),

so we have the desired δT
δν

= −∇ · (ρ∇ν).
Taking the derivative of T now with respect to ρ gives the Hamiltonian dynamics for ν;

we again repeat a similar variation

T (ρ+ ϵξ, ν) = −
1

2



ν(∇ · ((ρ+ ϵξ)∇ν)) dx

= T (ρ, ν)−
1

2
ϵ



ν(∇ · (ξ∇ν)) dx

= T (ρ, ν) +
1

2
ϵ



∇ν ·∇ν dξ,

giving us δT
δν

= 1
2(∇ν)2.

These results are consistent with previous ndings [4, 8]. An equivalent formulation to
the kinetic term of T (ρ, ν) = 1

2


(∇ν)2 dρ.

Proof of Gradients and Convexity for Example Functions.

Example 1. The Wasserstein gradient is straight-forward to compute (again via a variation):

V (ρ+ ϵξ) =



V(x)(ρ+ ϵξ)(x) dx = V (ρ) + ϵ



V(x) dξ,

resulting in δV
δρ

= V .

To prove convexity under W 2, take two µ0, µ1 ∈ P(R) and suppose there exists an optimal
transport plan γ such that there exists a Wasserstein geodesic t → µt for t ∈ [0, 1]:

µt = ((1− t)x+ ty)#γ
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where # represents a push-forward. Then, looking at V (µt) shows that V is convex only
when V is:

V (µt) =



V(x) dµt(x)

=

 

V((1− t)x+ ty) dγ(x, y) Law of Unconscious Statistician

≤

 

(1− t)V(x) + tV(y)) dγ(x, y) V convex

= (1− t)V (µ0) + tV (µ1)

Example 2. We nd δV (ρ)
δρ

by considering the following variation (for some measure ξ over

Ω):

V (ρ+ ϵξ) =
1

2



(ρ+ ϵξ)(x)(ρ+ ϵξ)(y)W (x, y) dx dy

=
1

2



ρ(x)ρ(y) + ϵξ(x)ρ(y) + ϵξ(y)ρ(x) + o(ϵ2)


W (x, y) dx dy

= E(ρ) + ϵ



W (x, y)ρ(y)dy

  
δE
δρ

dξ + o(ϵ2)

Again, consider the same geodesic from the previous example. We see that convexity
under W 2 depends on convexity of W :

V (µt) =

 

W (x, y) dµt(x) dµt(y)

=

 

W ((1− t)x+ tx′), (1− t)y + ty′) dγ(x, x′) dγ(y, y′)

≤

 

((1− t)W (x, y) + tW (x′, y′)) dγ(x, x′) dγ(y, y′) W (x, y) convex

= (1− t)V (µ0) + tV (µ1)

so E2 is convex under the Wasserstein geodesic when W is convex.
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