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Abstract. We extend upon previous works of accelerated gradient ows (with momen-
tum) in the Wasserstein-2 metric. The new ow imitates a gradient-based descent method
used for structural relaxation and adds an addition “steering” term to the momentum up-
dates. We provide simple numerical examples which show competitive convergence rates
with this new method.

1. Introduction

In optimization we typically seek the solution to

min
x∈Ω

f(x)

where f is a convex function from Ω → R. The most popular method, gradient descent, can
be modelled by the following trajectory (discrete and in the continuous limit):

xn+1 = argmin
x

{f(x) +
1

2η
dist(x, xn)}

d

dt
x =−∇f(x).

(1)

However, convergence with gradient descent is typically slow near minima due to a vanishing
gradient. Several augmentations to gradient descent have been proposed which may improve
the convergence rates, the most notable being momentum-based approaches (e.g., Nesterov’s
algorithm). These methods introduce a velocity/momentum term which is updated by the
gradient, and gradually damped so that a stationary point is eventually reached. We will
show in Section 2 that accelerated gradient ows can be formulated as the superposition of
Hamiltonian ow and a damped ow.

In this work we consider optimization of functionals over the space of probability distri-
butions (with nite second order moments):

min
µ∈P2(Ω)

F (µ),

where F : P2(Ω) → R is a functional over the space of probability distributions. We
extend several gradient-based optimization methods with the gradient ows of metric spaces,
considering the convergence rates of these approaches.

FIRE Minimization. [1] proposes a novel minimization algorithm for local atomic struc-
ture optimization, known as FIRE. The algorithm utilizes only gradient information, but
has been shown to be competitive with conjugate gradient and quasi-Newton methods. The
authors of FIRE recommend the following equation of motion, analogous to a “blind skier”
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search:

d

dt
q⃗ = p⃗(t)

d

dt
p⃗ =

⃗F (t)

m
−γ(t)|p⃗(t)|(p̂(t)− F̂ (t))

(2)

where γ(t) is a damping factor, F⃗ = −∇f(x), and mass m (we will consider only m = 1).
In comparison to standard accelerated gradient-descent approaches, FIRE not only includes
damping but also “steering,” which introduces new dynamics as compared to the ow of
these accelerated gradient methods (see Section 2).

2. Hamiltonian Dynamics of Optimization Methods

As shown in [2], the class of accelerated gradient descent methods (e.g., Nesterov’s method
[3]) can be modeled by the combination of Hamiltonian dynamics with a damping eld.

Review of Hamiltonian Dynamics. Hamilton’s principle, or the principle of least ac-
tion, describes the law governing the dynamics of mechanical systems. The Lagrangian is
commonly used, coupled with the Euler-Lagrange equations, to describe the equations of
motion.

Similarly, we can describe the same dynamics through Hamiltonian mechanics. Let q⃗ =
{qi}

N
i=1 denote coordinate/position variables, and p⃗ = {pi}

N
i=1 represent the corresponding

momentum. The dynamics are governed by the following system:

dq⃗

dt
=

∂H

∂p⃗
,

dp⃗

dt
= −

∂H

∂p⃗
. (3)

Assuming that the kinetic energy T has a homogeneous quadratic dependence and the
potential energy V is independent of velocity, the Hamiltonian is equivalent to the total
energy of the system; i.e., H(q⃗, p⃗, t) = H(q⃗, p⃗) = T (p⃗) + V (q⃗). In the case of optimization,
we set V to be the function we with to minimize over (i.e., V (x) = f(x)).

By conservation of energy, starting with any given (q⃗0, p⃗0), the dynamics must evolve
along a xed level set, for which H(q⃗, p⃗) = H(q⃗0, p⃗0). That is, the trajectory is along a xed
subset in (p, q) phase space.

Damped Hamiltonian Flow. In optimization, we require that the solution reaches a sta-
tionary/xed point, which is generally incompatible with systems lacking dissipative forces.
For example, a simple harmonic oscillator without damping has a maximum displacement
that is invariant with time.

A system with damping/dissipative forces cannot be described by a Hamiltonian dynam-
ics with a Hamiltonian which equals the system’s total energy; for example, the following
equation of motion:

d2q

dt2
+ γ(t)

dq

dt
+

dV (q)

dq
= 0. (4)

We manually introducing a dissipation eld (as in [2]); we extend upon this idea by also
adding velocity modications.
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Dissipation Field and Steering. Following [2] and [4], we introduce a dissipation eld
which aects the equation of motion for momentum:

d

dt


q⃗

p⃗



=


1 0
0 −1

 
∇p⃗H
∇q⃗H



−


0

γ(t)p⃗



. (5)

This combines the Hamiltonian ow with a dissipative force, ensuring that ∥p⃗∥ → 0 as t →
∞. Notice that without damping and with a kinetic term that is quadratic in momentum,
Equation 5 reduces to the velocity updating under traditional gradient descent.

Figure 1 represents the ow elds for the right-hand side of this equation for a particle with

a one-dimensional quadratic kinetic and potential energy: T (p, q) = p2

2m and V (q) = 1
2q

2.

q

p

Hamiltonian eld

q

p

Combined eld

q

p

FIRE Hamiltonian eld

q

p

FIRE eld

Figure 1. Left to right: Hamiltonian, dissipative ow, accelerated Hamiltonian
ow, FIRE-Hamiltonian (no dissipation), and FIRE vector elds for a particle
with quadratic potential. Position q on the horizontal axis and momentum p on the
vertical axis, damping is γ(t) = 1

2 .

We consider the equation of motion prescribed by FIRE (Equation 2), and augment the
ow in Equation 5 to mimic the motion by introducing an additional velocity modication
(i.e., steering):

d

dt


q⃗

p⃗



=



1 0

0 −(1 + γ(t) ∥p⃗∥
∥∇q⃗H∥)

 
∇p⃗H
∇q⃗H



−


0

γ(t)p⃗



. (6)

Equations 5 and 6 dene our the setup for accelerated gradient ow and accelerated gradi-
ent ow with steering, which we generalize to descent methods over the space of probability
distributions.
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3. Accelerated Gradient Flow

Hamiltonian with Wasserstein Gradient Flow. Rather than considering the equa-
tion of motion for a particle, we generalize to probability distributions, replacing q⃗ with
ρ (position) and p with ν (velocity), and update the functional we wish to minimize over
V : P2(Ω) → R. That is, Equation 5 now is updated to:

∂

∂t


ρ

ν



=


1 0
0 −1

 
δ
δν
H

δ
δρ
H



−


0

γ(t)ν



. (7)

We consider Equation 7 only in the Wasserstein metric, though this can be extended
to various other metrics. The Wasserstein Gradient Flow, with respect to some functional
F : P2(Ω) → R, satises:

∂

∂t
ρ = ∇ ·



ρ∇
δF

δρ



, (8)

where ∇ δF
δρ

is the Wasserstein gradient and δF
δρ

can be found through a small variation,

considering F (ρ+ ϵξ) for some ξ ∈ P2(Ω) [5].
We adapt the Hamiltonian ow by nding the kinetic term of the Hamiltonian in terms

of ν. We posit H(ρ, ν) = T (ρ, ν) + V (ρ) and that one should recover updates according to
the Wasserstein Gradient Flow; i.e.,

∂

∂t
ρ =

δH

δν
=

δT

δν
:= −∇ · (ρ∇ν) ,

implying that the kinetic term has the form:

T (ρ, ν) := −
1

2



(∇ · (ρ∇ν)) dν. (9)

Using this new kinetic term results in the following Hamiltonian dynamics for ν:

δH

δρ
=

δT

δρ
+

δV

δρ
=

1

2
(∇ν)2 +

δV

δρ
(10)

see Appendix A for details of the proof.

Incorporating Steering. We are not aware of a suitable norm for probability spaces (since
a metric does necessarily induce a norm), so to adapt Equation 6 for gradient ows, we use
a “norm” which only considers the square-root of the second-moment of a distribution. Note
that this does not meet all the requirements of a norm, but the goal is to approximate the
behavior of Equation 6. One interpretation of the dynamics is:

∂

∂t
ρ = −∇ · (ρ∇ν)

∂

∂t
ν = −γ(t)ν −



1 + γ(t)



Ex∼ν [z2]

Ex∼τ [x2]



τ

(11)

where τ is 1
2(∇ν)2 + δV

δρ
.

We note that for a convex function, the strict minimizer is clearly a stationary point for
standard gradient ow and accelerated gradient ow (damping sets the velocity to zero).
For our ow with steering, the same may not hold true if the τ does not vanish faster than
its second moment.
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Discretization of Accelerated Gradient Flow (No Steering). We seek to nd a dis-
cretization of the Accelerated Wasserstein gradient ow, in terms of particles x⃗ = {xi}

N
i=1

with xi ∼ ρ and velocities v⃗ = {vi}
N
i=1.

It is unclear how to discretize Equation 11. We model similar to [4] and will attempt the
following discretization:

d

dt
xi = vi

d

dt
vi = −γ(t)vi −



1 + γ(t)



Ex∼ν [z2]

Ex∼Fi
[x2]



Fi

Fi = ∇


δV

δρ



(xi)

(12)

and estimate the moments after the discretization.

Wasserstein Gradient and Convexity of Example Functions. We now consider ex-
ample potential energies V (ρ) and consider their corresponding Wasserstein gradient and
convexity under the Wasserstein-2 geometry.

Example 1: V (ρ) =

V(x)ρ(x) dx for V : Ω → R.

The Wasserstein gradient is ∇ δV
δρ

= ∇V . In addition, V is always convex under the L2

metric, but is only convex under W 2 when V is also convex.

Example 2: V (ρ) = 1
2


W (x, y)ρ(x)ρ(y) dx dy for W : Ω× Ω → R.

The Wasserstein gradient is ∇ δV
δρ

=

∇W (x, y)ρ(y) dy. Furthermore, in W 2 metric, V is

convex only when W is convex.

Example 3: V (ρ) = −

ρ(x)f(ρ(x)) dx for f : R+ → R.

The Wasserstein gradient is ∇ δV
δρ

= −∇(f(ρ) + ρf ′(ρ)) and is convex when f is convex.

4. Numerical Examples

Example: Quadratic Function. We consider Ω = R
3 and the following potential:

V (ρ) =



Ω

∥x∥2ρ(x) dx,

which clearly has a strict minimizing measure ρ⋆ (delta about zero) with minimum value 0.
In our numerical experiments we take a Lagrangian discretization of the distribution,

taking N points, rewriting the potential as:

V (ρ) ≈
1

N

N

i

∥xi∥
2

Figure 2 shows the convergence rate comparing the three approaches: standard gradient
ow, accelerated ow, and accelerated ow with steering.
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Figure 2. Simple quadratic function gradient ow convergence comparison. En-
ergy versus iteration number.

Example: Fokker–Planck. We consider Ω = R
2 and the following potential:

V (ρ) =



Ω

∥x∥2ρ(x) dx−



Ω

ρ(x)(log(x)− 1) dx,

which is the sum of a linear term and an entropy (with respect to Lebesque measure on R
2).

As we have shown in, this is the sum of two convex functions.
Under our Lagrangian discretization, we rewrite the potential as:

V (ρ) ≈
1

N


N

i

∥xi∥
2 − log(min

j ̸=i
dist(xi, xj))



.

Notice that the right expression is an estimator of the entropy, which sums the logarithm
of the nearest-neighbor distance [5]. In our implementation, we build a K-D Tree for fast
nearest-neighbor lookup. The gradients are also computed analytically.

We randomly same N = 103 random points, with half sampled from the rst quadrant
and the other half the third quadrant. Figure 3 shows the initial conguration, after 500,
1000, 2000, and 5000 iterations of the discretization gradient ow for standard descent,
accelerated ow without steering, and accelerated ow with steering. The points converge
along a Gaussian distribution.
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Figure 3. Fokker-Planck gradient ow for standard gradient descent (top), ac-
celerated ow (middle), and accelerated ow with steering (bottom). Left to right:
Initial conguration (uniformly sampled from rst and third quadrant), after 500, 1000, 2000,
and 5000 iterations of gradient ow with xed step size 0.5 and damping γ(t) = 0.5. Color
based on iteration number.

Animated visualizations of comparing these ows can be found here.
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Figure 4. Fokker-Planck gradient ow convergence comparison.
Energy versus iteration number (left) and residual (right).
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Figure 4 shows the total potential energy as a function of iteration number. The acceler-
ated ow with steering appears to converge signicantly faster than the other two methods.

Though we have not proven convergence rates (it is not straightforward to nd this), [4]
has shown that if V is β-strongly convex, then convergence of accelerated Wasserstein gra-

dient ow is O(e−
√
βt). We predict it is not signicantly dierent for the case of accelerated

ow with steering.
However, experimental results seem to dictate that there are scenarios where this accel-

erated gradient ow converges faster than previous methods.

Example: KL Divergence. We follow [6] to approximate the KL Divergence from sam-
ples. Our numerical experiment tests against a Cornell University logo, from which we
sample 103 − 104 points. The initial conguration is uniformly sampled from a 2-D square
and we perform several iterations of our accelerated descent with steering, shown in Figure 5.

Figure 5. KL Divergence example. From left to right: reference Cornell logo,
initial conguration, resulting conguration after 500 iterations, 1000 iterations,
and 5000. Distribution of reference image taken by sampling 103 − 104 points.

We do not cite convergence rates since the KL divergence estimate sometimes resulted in
overows. A fully animated visualization can be found here.

5. Discussion

We have developed and implemented several methods for Wasserstein gradient ow, con-
sidering ow without damping or acceleration, with damping (accelerated ow), and nally
with damping and velocity “steering.” We are not aware of any previous work that incorpo-
rates velocity steering in the context of gradient ow. These results may be benecial for
high-performance gradient ow (e.g., in training Bayesian neural networks).

In terms of potential future directions, the discretization of our algorithms could be im-
proved, such as with adaptive step sizes and non-constant damping. In addition, we note
that the Lagrangian discretization is not suitable for distributions in high-dimensions and
does not oer a good approximation to these measures without an exceedingly high compu-
tational cost. Some work has shed light toward the use of neural networks to approximate
the JKO update scheme (by estimating the proximal update) [7]. Though we were lim-
ited by computational resources, we should certainly aim for a wider variety of numerical
experiments for benchmarks, perhaps considering optimization over non-convex functions.

Regarding our choice of Hamiltonian dynamics, we manually added damping to our sys-
tem. This separates the Hamiltonian dynamics from the damping forces, which allows the
Hamiltonian to be equal to the total energy and conserves its quantity (time-independent).
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However, this is not a strict requirement; one may consider a Hamiltonian with exponential
time factors, relaxing our requirement that H equals the total energy.

All code used to create the gures and numerical examples can be found here.

Appendix A. Gradient Flow Derivations

Kinetic Term of Hamiltonian. Following [5], we show that T (ρ, ν) in Equation 9 has
the desired derivative with respect to ν. Take some ξ ∈ P2(Ω) and ϵ ∈ R and consider the
variation

T (ρ, ν + ϵξ) = −
1

2



(ν + ϵξ)(∇ · (ρ∇(ν + ϵξ)))(x) dx

= −
1

2



(ν(∇ · (ρ∇ν))(x) dx

  

T (ρ,ν)

−ϵ



(ξ(∇ · (ρ∇ν))(x) dx+ o(ϵ2)

= T (ρ, ν)− ϵ



∇ · (ρ∇ν)) dξ + o(ϵ2),

so we have the desired δT
δν

= −∇ · (ρ∇ν).
Taking the derivative of T now with respect to ρ gives the Hamiltonian dynamics for ν;

we again repeat a similar variation

T (ρ+ ϵξ, ν) = −
1

2



ν(∇ · ((ρ+ ϵξ)∇ν)) dx

= T (ρ, ν)−
1

2
ϵ



ν(∇ · (ξ∇ν)) dx

= T (ρ, ν) +
1

2
ϵ



∇ν ·∇ν dξ,

giving us δT
δν

= 1
2(∇ν)2.

These results are consistent with previous ndings [4, 8]. An equivalent formulation to
the kinetic term of T (ρ, ν) = 1

2


(∇ν)2 dρ.

Proof of Gradients and Convexity for Example Functions.

Example 1. The Wasserstein gradient is straight-forward to compute (again via a variation):

V (ρ+ ϵξ) =



V(x)(ρ+ ϵξ)(x) dx = V (ρ) + ϵ



V(x) dξ,

resulting in δV
δρ

= V .

To prove convexity under W 2, take two µ0, µ1 ∈ P(R) and suppose there exists an optimal
transport plan γ such that there exists a Wasserstein geodesic t → µt for t ∈ [0, 1]:

µt = ((1− t)x+ ty)#γ
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where # represents a push-forward. Then, looking at V (µt) shows that V is convex only
when V is:

V (µt) =



V(x) dµt(x)

=

 

V((1− t)x+ ty) dγ(x, y) Law of Unconscious Statistician

≤

 

(1− t)V(x) + tV(y)) dγ(x, y) V convex

= (1− t)V (µ0) + tV (µ1)

Example 2. We nd δV (ρ)
δρ

by considering the following variation (for some measure ξ over

Ω):

V (ρ+ ϵξ) =
1

2



(ρ+ ϵξ)(x)(ρ+ ϵξ)(y)W (x, y) dx dy

=
1

2



ρ(x)ρ(y) + ϵξ(x)ρ(y) + ϵξ(y)ρ(x) + o(ϵ2)


W (x, y) dx dy

= E(ρ) + ϵ



W (x, y)ρ(y)dy

  
δE
δρ

dξ + o(ϵ2)

Again, consider the same geodesic from the previous example. We see that convexity
under W 2 depends on convexity of W :

V (µt) =

 

W (x, y) dµt(x) dµt(y)

=

 

W ((1− t)x+ tx′), (1− t)y + ty′) dγ(x, x′) dγ(y, y′)

≤

 

((1− t)W (x, y) + tW (x′, y′)) dγ(x, x′) dγ(y, y′) W (x, y) convex

= (1− t)V (µ0) + tV (µ1)

so E2 is convex under the Wasserstein geodesic when W is convex.
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